Purification and Properties of Two Protease Inhibitors from Rat Skin Inhibiting Papain and Other SH-Proteases

M. JÄRVINEN*

Department of Anatomy, University of Oulu, SF-90220 Oulu 22, Finland

Two papain inhibitors, I₁ and I₂, from rat skin extract were purified by affinity chromatography on KSCN-modified papain-agarose gel and by gel filtration on Sephadex G-100. I₁ had a molecular weight of 74 000, a pI of 4.6, and it contained 4 % of carbohydrates. I₁ inhibited papain, ficin, bromelain, rat skin benzoylarginine-2-naphthylamide hydrolase, and to a minor extent, rat skin cathepsin C and bovine trypsin. Bovine chymotrypsin or rat skin cathepsin D were not inhibited and benzoylarginine-2-naphthylamide hydrolase was inhibited only at alkaline pH. An inhibitor corresponding to I₁ was present in various rat tissues and also in serum. A similar inhibitor was present in the skin of cat, rabbit, guinea pig, and man. I₂ had a molecular weight of 13 400, a pI of 4.9 and it contained no carbohydrates. I₂ inhibited all thiol proteases tested, but not trypsin, chymotrypsin, or rat skin cathepsin D. I₂ formed an equimolar complex with papain and benzoylarginine-2-naphthylamide hydrolase. I₁ was present in rat skin, muscle, lung, and small intestine, but not in kidney, liver, or serum. A similar inhibitor was found in skin extracts of cat, rabbit, guinea pig, and man.

A number of inhibitors of serine proteases have been characterized from various plant and animal sources, while only a few inhibitors of SH-proteases, such as papain (E.C. 3.4.22.2), cathepsin B1 (cathepsin B, E.C. 3.4.22.1), and cathepsin C (dipeptidyl peptidase, E.C. 3.4.14.1) are known. Finkenstaedt found that the supernatant fraction after differential centrifugation of rat liver homogenate inhibited cathepsins B and C, an observation not confirmed by Bouma and Gruber. A polysaccharide associated with mouse haptoglobin inhibits bovine cathepsin B1, papain, and trypsin. However, human haptoglobin does not inhibit human cathepsin B1, while α₂-macroglobulin is inhibitory. Chicken egg white contains an inhibitor with a molecular weight of 12 700 that inhibits the plant proteases papain and ficin (E.C. 3.4.22.3), and also the mammalian SH-proteases, cathepsins B1 and C. The inhibitor has different active sites for cathepsins B1 and C and it forms complexes with enzymatically inactive Hg²⁺-derivatives of the enzymes. An inhibitor with properties similar to the egg white inhibitor has been demonstrated from Arthus lesions of rabbit and guinea pig skin and from rabbit skin burns. Sera of rabbit, guinea pig, and cow contain an inhibitor that inhibits papain and a neutral inflammatory SH-protease. The serum inhibitor is contained in the α₁-acid glycoprotein fraction and has a molecular weight of about 40 000 – 50 000.

During purification of rat skin benzoylarginine-2-naphthylamide hydrolase (BANA hydrolase), the presence of two inhibitors, I₁ and I₂, of the enzyme in the skin was noticed. They also inhibited papain, and in this communication purification of the inhibitors, based on their papain inhibiting capacity, is presented. Some properties of the inhibitors are given and the presence of similar inhibitors in rat tissues and in skin of several mammalian species is demonstrated.

MATERIALS AND METHODS

Reagents. α-N-Benzoyl-DL-arginine-2-naphthylamide hydrochloride (BANA), α-D-methylmannoside, porcine chymotrypsinogen A, and...
equine cytochrome c were from Fluka AG. N-Acetyl-L-tirosine ethylester (ATEE), casein (nach Hammarten), ethylenediaminetetraacetatic acid disodium salt (EDTA), and 4-dimethylaminobenzaldehyde were from E. Merck AG. Bovine hemoglobin (type II), bovine serum albumin, anthrone, indole, and Coomassie Brilliant Blue R-250 were from Sigma Chemical Co. Glycyl-L-arginine-naphthylamide (Gly-Arg-NA) was from Fox Chemical Co., di-thiothreitol (DTT) from Calbiochem, and cyanogen bromide from Eastman-Kodak. Sepharose 4B, Concanavalin A-Sepharose 4B, Sephadex G-100, Sephadex G-200, and Blue Dextran were purchased from Pharmacia Fine Chemicals. Goat antiserum against rat serum proteins was obtained from Nordic Immunological Laboratories.

Enzyme preparations. Rat skin BANA hydrolase preparations AI and NII were obtained as described previously. Rat skin cathepsin D was purified as described by Heikkinen et al. A cathepsin C preparation was partially purified from rat skin extract by precipitation with acetone, gel filtration on Sephadex G-200, and chromatography on DEAE-cellulose. The enzyme hydrolyzed Gly-Arg-NA at pH 5.0 producing glycylarginine and 2-naphthylamine as reaction products, and was activated by DTT. Papain (für biochemische Zwecke, E. Merck AG), ficin (crude, Sigma Chemical Co.), and bromelain (grade II, Sigma Chemical Co.) were dissolved in water (0.1 mg/ml) and used within one day. Bovine trypsin (type III, Sigma Chemical Co.) and chymotrypsin (type II, Sigma Chemical Co.) were dissolved in 1 mM HCl (0.1 mg/ml) and used within four days. Mercuriapain was prepared from Merck's papain by affinity chromatography on an organomercurial-agarosé column according to Suyterman and Wijdenes. The procedure increased the specific activity of papain 3.6-fold.

Inhibition assays. All assays were performed in duplicate. The incubation mixture was composed by pipetting 0.1 ml of an inhibitor solution, 0.1 ml of an enzyme solution, and 0.1 ml of a buffer to a test tube at room temperature. After 10 min, the tube was transferred to a 37 °C water bath, and 0.1 ml of a substrate was added. The mixture was incubated for 10 min, and the reaction products were assayed. The buffers were: 0.2 M Tris-HCl, pH 7.5, 4 mM DTT, 8 mM EDTA for papain, ficin, and bromelain; 0.2 M Tris-HCl, pH 8.0, 10 mM CaCl₂ for trypsin and chymotrypsin; Britton-Robinson buffer, pH 5.8, 0.8 mM DTT, 4 mM EDTA, 4 mM KCN for BANA hydrolase; 0.2 M sodium acetate buffer, pH 5.0, 0.2 M NaCl, 4 mM DTT, 4 mM EDTA for cathepsin C, and sodium lactate-aceitate buffer, pH 4.5 for cathepsin D. 4 BANA (5 mM) was used as a substrate for papain, ficin, bromelain, BANA hydrolase, and trypsin; Gly-Arg-NA (1 mM) for cathepsin C; hemoglobin (2%) for cathepsin D, and ATEE (15 mM) or casein (1%) for chymotrypsin.

The reaction products were assayed as described previously. The inhibition was expressed as the amount of an enzyme inhibited by 1 ml of an inhibitor solution (U/ml) or by 1 mg of an inhibitor (U/mg). Linearity of the inhibition assays were always controlled by using serial dilutions of inhibitor solutions.

Other assay methods. Proteins were determined as described previously. Carbohydrates were assayed by indole and anthrone using glucose as a standard.

Tissue extracts. Long Evans rats weighing 150–200 g were used. Extracts of rat tissues and of rabbit, guinea pig, cat, and human (a female cadaver) skin were prepared as described previously, but the tissues were minced with scissors and homogenized in 10 mM sodium phosphate buffer, pH 6.0, 1% KCl, using Ultra-Turrax TP-18 homogenizer. When large quantities of rat skin extract were needed, the skin was minced with a meat mincer and Ultra-Turrax T-45 homogenizer was used. The protein concentration of a typical rat skin extract was 2.1 ± 0.18 mg/ml and the specific papain inhibiting activity was 0.12 ± 0.4 U/mg.

Acetone precipitation. To 50 ml of extract 117 ml of cold (−18 °C) acetone was slowly added in a cooling bath (−10 °C), and the precipitated proteins were collected by centrifugation at 8000 g, at −10 °C, for 10 min. The sediment was dissolved in 5 ml of 10 mM sodium phosphate buffer, pH 6.0, 0.1 M NaCl, and undissolved materials were removed by centrifugation at 8000 g, for 10 min, at +4 °C. The supernatant was filtered by suction through a Millipore type AP prefilter and AA filter, and applied to a Sephadex G-100 column.

Affinity chromatography on papain-Sepharose. Sepharose 4B was activated by cyanogen bromide and washed according to March et al. The washed gel (100 ml) was suspended in 200 ml cold 0.2 M sodium bicarbonate, pH 9.5, and 1 g of papain, dissolved in 100 ml of the bicarbonate buffer, was added. The coupling and washing of the gel was performed as described by March et al. To 1 ml of the gel 6.1 mg of papain was coupled as estimated from the protein content of gel washings. The papain-Sepharose gel was suspended in water to obtain a total volume of 200 ml, and 184 g of KSCN was slowly dissolved in the suspension under continuous stirring (the final concentration of KSCN was 5 M). The pH of the suspension was adjusted to 4.0 by 2 M acetic acid, and the suspension was allowed to stand for 2 h at room temperature. This procedure destroyed the BANA hydrolyzing activity of the papain-Sepharose gel. The gel was washed in a glass funnel with 1.0 l of water, 0.5 l of 3 M KSCN in 20 mM trisodium phosphate, and 1.0 l of 10 mM sodium phosphate buffer, pH 6.0, 0.1 M NaCl, and stored as a suspension in 10 mM phosphate buffer, 0.1 M NaCl, 0.02 % NaN₃, at pH 6.0. A column of 2.5 x 20 cm was packed with the inactivated papain-Sepharose.

and equilibrated with 10 mM sodium phosphate buffer, 0.1 M NaCl, pH 6.0. 450 ml of rat skin extract was applied to the column by pumping it two times through the column at a flow rate of 100 ml/h. Unadsorbed material was eluted with 100 ml of the equilibrating buffer, collecting fractions of 10 ml. Nonspecifically adsorbed proteins were eluted with 100 ml of 3 M KCl in the buffer, and KCl was washed out by 100 ml of the equilibrating buffer. Elution of the inhibitors was performed with 200 ml of 20 mM trisodium phosphate, 0.1 M NaCl (pH 12.1). Finally, the column was washed with 100 ml of 3 M KSCN in 20 mM sodium acetate buffer, pH 4.0, and equilibrated with the starting buffer for a subsequent chromatographic run. The pooled inhibitors from papain-Sepharose affinity chromatography were concentrated to 40 ml on Diaflo UM-10 (Amicon NV) membrane and applied to a column of Sephadex G-100.

Gel filtration. A column of Sephadex G-100 with dimensions of 5 x 90 cm was used in the purification procedure. The column was equilibrated with 10 mM sodium phosphate buffer, pH 6.0, 0.1 M NaCl, at a flow rate of 60 ml/h, and fractions of 10 ml were collected. A Sephadex G-100 column with dimensions of 2.6 x 32 cm was used to demonstrate inhibitor activities in various tissues and to estimate the molecular weights of purified inhibitors. The column was equilibrated with 10 mM phosphate buffer, pH 6.0, 0.1 M NaCl. A sample of 4 ml was applied to the column at a flow rate of 20 ml/h and fractions of 2 ml were collected. The column was calibrated by using Blue Dextran, bovine serum albumin, chymotrypsinogen A, and cytochrome c as standards, and the molecular weights of the inhibitors were estimated according to Andrews. Chromatography on Concanavalin A-Sepharose. A column of Concanavalin A-Sepharose 4 B with dimensions of 1.6 x 6 cm was equilibrated with 10 mM phosphate buffer, pH 6.0, 0.1 M NaCl, and 10 ml of a purified inhibitor preparation was applied to the column at a flow rate of 40 ml/h, collecting fractions of 3 ml. Unadsorbed proteins were eluted with 50 ml of the equilibrating buffer, and adsorbed glycoproteins with 200 ml of 50 mM α-methyl mannoside in the buffer.

Isoelectric focusing. Preparative isoelectric focusing of glycoproteins was performed by Wrigley. Diaalyzed samples containing 10 μg of protein were entrapped in the gels during polymerization. After focusing, the gels were stained for proteins by Coomassie Brilliant Blue R-250 and for polysaccharides by the PAS reaction. To determine the inhibitor activities of the focused bands, unstained gels were sliced longitudinally into halves. One was stained as described above, and the other cut transversely into 1.5 mm pieces. The pieces were extracted for 20 h with 200 μl of water, at 4°C, and the papain-inhibiting activities of the extracts were assayed as usual, but a dilute papain solution (0.05 mg/ml) and a long reaction time (60 min) was used.

Preparation of antisera. 0.5 ml of a purified inhibitor solution, containing 0.05 mg of protein, was emulsified with 0.5 ml of complete Freund's adjuvant and injected intradermally to the dorsal skin of a rabbit in ten aliquots. The injection was repeated three times at three weeks intervals using incomplete Freund's adjuvant. Eight days after the last injection blood was collected and serum prepared. The double diffusion method of Ouchterlony and immunoelectrophoresis on agarose plates, buffered with diethyl barbiturate buffer, pH 8.6, were used to test antigen-antibody reactions.

RESULTS

Evaluation of papain-Sepharose affinity chromatography. The rat skin inhibitors of BANA hydrolase also inhibited papain and were adsorbed on papain-Sepharose in a wide pH-range (pH 3–8). The adsorbed inhibitors could not be eluted by 1 mM HgCl₂, or by increasing or lowering the pH of the eluting buffer (pH 2–12), in the presence of 3 M KCl or 6 M urea. The inhibitors were, however, dissociated from papain-Sepharose by 3 M KSCN in 20 mM acetate buffer, pH 4.0. Repeated elutions with 3 M KSCN, at pH 4.0, destroyed the BANA hydrolyzing activity of the papain-Sepharose adsorbent. It was found

![Fig. 1. Papain-Sepharose affinity chromatography. Eluents: 1: 10 mM phosphate buffer, pH 6.0, 0.1 M NaCl. 2: 10 mM phosphate buffer, pH 6.0, 3 M KCl. 3: 10 mM phosphate buffer, pH 6.0, 0.1 M NaCl. 4: 20 mM Na₃PO₄, 0.1 M NaCl. 5: 20 mM Acetate buffer, pH 4.0, 3 M KSCN. Other details are given in "Materials and Methods".](image-url)
that the inhibitors were adsorbed to a KSCN-inactivated papain-Sepharose, and that from the inactivated adsorbent they could also be eluted without KSCN by increasing the pH of the elution buffer to 8.9, or higher. The milder elution of the inhibitors from the inactivated adsorbent at alkaline pH resulted in an increased recovery of the inhibitors. Thus the papain-Sepharose gel was inactivated before use and the inhibitors were eluted at alkaline pH, as described in “Materials and Methods”.

Purification of inhibitors. The papain-Sepharose affinity chromatography is depicted in Fig. 1. The inhibitors eluted with the alkaline buffer were pooled (fractions Nos. 56–65). The pooled inhibitors had a specific papain inhibiting activity of 1.23 U/mg. The yield was 42% and the purification factor 11, as compared to the activity of the extract.

Concentrated inhibitors from papain-Sepharose affinity chromatography were separated into two fractions I₁ and I₂ on Sephadex G-100 (Fig. 2). Pooled I₁ (fractions Nos. 71–82) had a specific papain inhibiting activity of 2.6 U/mg and pooled I₂ (fractions Nos. 120–132) 5.8 U/mg. The purification factors, as compared to the activity of the extract, were 24 for I₁ and 53 for I₂. The total inhibitor yield (I₁ + I₂) was 27% of the activity in the extract. A typical purification procedure is summarized in Table 1.

Properties of the inhibitors. The approximate molecular weights of 74,000 and 13,400 were obtained for I₁ and I₂ respectively.

Table 1. Summary of a typical purification procedure of the rat skin papain inhibitors.

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Volume (ml)</th>
<th>Protein (mg/ml)</th>
<th>Activity (U/ml)</th>
<th>Total activity (U)</th>
<th>Specific activity (U/mg)</th>
<th>Yield (%)</th>
<th>Purification factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extract</td>
<td>450</td>
<td>2.0</td>
<td>0.22</td>
<td>99</td>
<td>0.11</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Papain-Sepharose</td>
<td>90</td>
<td>0.38</td>
<td>0.47</td>
<td>42</td>
<td>1.2</td>
<td>42</td>
<td>11</td>
</tr>
<tr>
<td>Sephadex G-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₁</td>
<td>116</td>
<td>0.046</td>
<td>0.12</td>
<td>14</td>
<td>2.6</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>I₂</td>
<td>130</td>
<td>0.017</td>
<td>0.099</td>
<td>13</td>
<td>5.8</td>
<td>13</td>
<td>53</td>
</tr>
</tbody>
</table>

The carbohydrate content of I₁ was 4 %, while I₂ did not contain carbohydrates. As expected for a glycoprotein, I₁ was adsorbed to a column of concanavalin A-Sepharose and could be eluted with α-methyl mannoside in the buffer. The procedure did not increase specific activity of I₁, I₂ was not adsorbed to concanavalin A-Sepharose.

The isoelectric point of I₁ was 4.6 and that of I₂ 4.9, as measured after preparative isoelectric focusing. Analytical isoelectric focusing of I₁ separated 4—5 protein bands, which were also stained by the PAS reaction for carbohydrates (Fig. 3). The papain inhibiting activity of I₁ was focused in two peaks, which coincided with the two main protein bands of I₁. I₂ was focused in one major band and two minor bands, which were stained by the protein dye but not by the PAS reaction. The inhibitor activity of I₂ coincided with the main protein band.

At −18 °C the inhibitors were stable at least 6 months, and at +4 °C, in the presence of NaN₃ (0.2 g/l), at least 30 days. I₁ retained all its inhibitor activity after an incubation period of 20 min in a boiling water bath. I₁ lost 2 % of its activity at 65 °C, 32 % at 70 °C, and 78 % at 75 °C, during an incubation period of 20 min. The stability of the inhibitors was similar in 10 mM acetate buffer, pH 4.0, in 10 mM phosphate buffer, pH 6.0, and in 10 mM Tris buffer, pH 8.0, in the presence of 0.1 M NaCl.

Antiserum raised against I₁ was polyvalent. After immunoelectrophoresis anti-I₁ serum precipitated 6 bands from rat serum, although only one band was formed with I₁. The precipitate of I₁ and the major band of serum were located in the α₁-globulin fraction. In immunodiffusion according to Ouchterlony the precipitation band of I₁ fused with a heavy band of serum, which was a sum of several precipitates. Anti-I₁ serum did not form precipitates with I₂.

The antisera raised against I₂ formed a sharp precipitation band with I₂ and in addition, faint bands with I₁ and rat serum. After immunoelctrophoresis the precipitate of I₂ was located in the α₂-fraction, while the precipitates of I₁ and serum were found in the α₁-fraction. The results suggest that rat serum may contain a protein antigenically

![Graph](image)

Fig. 4. Inhibition of several proteases by I₁ and I₂. 1: papain (10 μg). 2: mercuripapain (1.8 μg protein). 3: bromelain (10 μg). 4: ficin (10 μg). 5: trypsin (10 μg). 6: BANA hydrolase (1.2 μg). 7: cathepsin C (1.2 μg). 100 μl of I₁ solution contained 9 μg and I₂ solution 1.7 μg of protein.

Table 2. Inhibition of several proteolytic enzymes by I₁ and I₂ as calculated from the data in Fig. 4.

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Inhibition (U/mg)</th>
<th>I₁</th>
<th>I₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papain</td>
<td>2.2</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Mercuripapain</td>
<td>0.64</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Ficin</td>
<td>2.5</td>
<td>10.6</td>
<td></td>
</tr>
<tr>
<td>Bromelain</td>
<td>2.2</td>
<td>8.4</td>
<td></td>
</tr>
<tr>
<td>BANA hydrolase</td>
<td><0.05</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Cathepsin C</td>
<td><0.05</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Cathepsin D</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trypsin</td>
<td>0.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* Not shown in Fig. 4.
Fig. 5. Effect of pH on inhibition of papain and BANA hydrolase by I_1 and I_2. 9 μg and 27 μg of I_1 was used in inhibition assays of papain and BANA hydrolase, respectively. 1.7 μg of I_2, 10 μg of papain, and 1.2 μg of BANA hydrolase were used. The buffer was Britton-Koebner universal buffer, containing 4 mM dithiothreitol and 8 mM EDTA. ○ No inhibitor, • with inhibitor.

Inhibition of several proteolytic enzymes by I_1 and I_2 is presented in Fig. 4 and Table 2. I_1 inhibited all SH-proteases tested, but not at all trypsin, chymotrypsin, or cathepsin D. I_1 inhibited strongly the plant SH-proteases papain, ficin, and bromelain, while only a slight inhibition of cathepsin C and BANA hydrolase (at pH 5.8) was noticed. In addition, slight inhibition of trypsin was noticed, while chymotrypsin or cathepsin D were not inhibited. Only mercuripapain and BANA hydrolase (preparation A1) were pure enough to permit the estimation of molar ratios of enzyme-inhibitor complexes. One mg of I_1 inhibited 0.64 mg of mercuripapain and one mg of I_2 1.7 mg of mercuripapain, or 1.9 mg of BANA hydrolase (the amount of mercuripapain was determined by the Lowry-method and is given as milligrams of protein). Using the molecular weights of the inhibitors and enzymes (23 000 for papain and 27 000 for BANA hydrolase) it can be calculated that one mol of I_1 inhibits 2.1 mol of mercuripapain, while one mol of I_2 inhibits 1.0 mol of mercuripapain or 0.94 mol of BANA hydrolase. The results suggest the molar ratio of 2:1 for papain-I_1 complex and 1:1 for papain-I_2 and BANA hydrolase-I_2 complexes. The inhibitors did not hydrolyze BANA, Gly-ArgNA, or hemoglobin.

Inhibition of papain by I_1 and I_2 and inhibition of BANA hydrolase by I_1 was only slightly affected by pH of the assay solution (Fig. 5). In contrast, inhibition of BANA hydrolase by I_1 increased 7-fold, when pH of the assay mixture was changed from 6 to 8.

Presence of inhibitors in tissues. In Fig. 6 a and b fractionation of papain inhibitors of

various rat tissues and of rabbit, guinea pig, cat, and human skin is presented. An inhibitor corresponding to the elution volume of I_1 (fraction No. 32) was present in rat serum and in all tissue extracts studied, and also in human serum (not shown in Fig. 6). An inhibitor corresponding to I_1 was present in all skin extracts studied and in rat lung, muscle, small intestine, and slightly in spleen, but was not found in rat serum, kidney, or liver.

DISCUSSION

The fact that the rat skin inhibitors of cathepsin B$_1$-like benzoylarginine-2-naphthylamide hydrolase also inhibited papain18 suggested that papain immobilized on agarose beads could be used as an affinity chromatography material in the purification of the inhibitors. Indeed, the inhibitors were bound to papain-Sepharose and the problem was how to elute them in active form. The inhibitors were successfully eluted with 3 M KSCN, at pH 4.0. SCN$^-$ is known to be a chaotropic ion that causes dissociation of multienzyme complexes,37 antigen-antibody complexes,38 and collagenase α-macroglobulin complexes.39,40

The inhibitors could not be eluted from papain-Sepharose with Hg$^{2+}$-ions, 3 M KCl, or 6 M urea, at pH 2–12 suggesting that free SH-group of papain, ionic forces, or hydrogen bonds are of minor importance for binding of the inhibitors. Similar results have been obtained by Sen and Whitaker,8 who failed to purify the egg white papain-ficin inhibitor on a ficin–CM-cellulose adsorbent.

Irreversible inactivation of papain-Sepharose by 5 M KSCN, at pH 4.0 weakened complexes of the inhibitors with the adsorbent, and after inactivation of the gel, the inhibitors were dissociated at alkaline pH, but not by 3 M KCl, at pH 6. The changes in Sepharose-bound papain caused by KSCN are not known. It is possible that papain is modified by thiocarbamylation or by denaturation. Denaturation of Sepharose-bound papain may be restricted by the numerous covalent linkages of papain with Sepharose in such a manner that inhibitors binding capacity of the gel is retained. Binding of protease inhibitors to inactive enzymes is known to occur in several cases. The egg white papain inhibitor forms complexes with inactive papain and cathepsin B$_1,$$^{7-9}$ and enzymatically inactive anhydrotrypsin, anhydrochymotrypsin and methyl-chymotrypsin form complexes with protease inhibitors.31,32

KSCN-inactivated papain-Sepharose did not adsorb all papain inhibitors from rat skin extract. A possible reason is the presence of competing enzymes in the extract. Inactive proteins are also adsorbed to the papain-Sepharose column. This is understandable, because papain is known as a potent proteolytic enzyme that has an affinity for numerous proteins. Most, but not all of the inactive proteins that are adsorbed to papain-Sepharose, are eluted with 3 M KCl in the equilibrating buffer.

I_1 inhibited effectively plant SH-proteases, while a high excess of I_1 was needed to inhibit rat skin cathepsin C and BANA hydrolase. BANA hydrolase was more effectively inhibited at alkaline than at neutral or acidic pH, which may explain the presence of a high-molecular-weight BANA hydrolyzing compound in gel chromatograms of rat skin extract, when elution was performed at pH 8.0.14 At pH 7.5 such a high-molecular-weight aggregate was not noticed.14

An inhibitor corresponding to I_1 seems to be quite common in rat tissues and in skin of various species. The similar molecular size and immunological reactivity of I_1 and the rat serum papain inhibitor suggest that I_1 in rat tissues might be derived from serum. I_1 is an acid glycoprotein and may be similar to the papain and neutral SH-protease inhibiting substance isolated by Tokaji from sera of cow, rabbit, and guinea pig.14 Trypsin is also slightly inhibited by I_1, but it is not known, whether this inhibition is caused by I_1 itself, or by a contaminating rat serum trypsin inhibitor.32 Mouse haptoglobin is associated with a polysaccharide that inhibits papain, cathepsin B$_1$, and also trypsin.8 It is not known, if I_1 is related to the haptoglobin-polysaccharide complex.

I_1 inhibited all SH-proteases tested, of both plant and animal origin. An inhibitor corresponding to I_1 was present in several rat tissues and abundantly in skin of various species. Its absence from rat serum suggests its intracellular nature.

I_1 seems to be similar to the inhibitor purified from rabbit skin with healing Arthus inflamma-
tion and from rabbit skin burns.14 I\textsubscript{1} and the
Arthus inhibitor11,12 have much in common
with the chicken egg white papain inhibitor:7-10
they all inhibit thiol proteases, but not serine
proteases, they have a molecular weight of
about 13,000, contain no carbohydrates,
and are resistant to high temperatures. In addition,
both I\textsubscript{1} and the egg white inhibitor form equi-
molar complexes with papain, and also form
complexes with enzymatically inactive papain.7-8
It is not known if I\textsubscript{1} is, like the egg
white inhibitor, a multihed inhibitor with
different active sites for cathepsin B1 (or papain)
and cathepsin C.19

The specific activity of a rat skin BANA
hydrolase preparation NII, which had been
purified 250-fold, increases markedly when the
enzyme is highly diluted, or preincubated at
pH 4, at 55 °C, for 20 min, before enzyme
assay.16,17 The presence of a dissociable inhibitor
in the enzyme preparation has been suggested.17
The antisera raised against purified rat skin
inhibitors I\textsubscript{1} and I\textsubscript{2} did not form immunoprecipitates
with BANA hydrolase preparation NII,
suggesting that the effect of dilution on BANA
hydrolase activity is not caused by I\textsubscript{1} or I\textsubscript{2}.

REFERENCES

1. Fritz, H., Tschesche, H., Greene, L. J. and
Truscheit, E., Eds., \textit{Bayer-Symposium V},
4. Snellman, O. and Sylven, B. \textit{Nature (Lon-
don)} 216 (1967) 1033.
5. Snellman, O. and Sylven, B. \textit{Experientia} 30
(1974) 1114.
6. Starkey, P. M. and Barrett, A. J. \textit{Biochim.
J. 131} (1973) 832.
7. Fossum, K. and Whitaker, J. R. \textit{Arch.
Biochem. Biophys. 125} (1968) 367.
8. Sen, L. C. and Whitaker, J. R. \textit{Arch. Bio-
chem. Biophys. 158} (1973) 623.
9. Keilová, H. and Tomášek V. \textit{Biochim.
11. Udaka, K. and Hayashi, H. \textit{Biochim. Biophys.
Acta 97} (1965) 251.
Acta 104} (1965) 600.
13. Ohyama, T. \textit{Tohoku J. Exp. Med. 113}
(1974) 231.
(1976) 53.
18. Heikkinen, J. E., Järvinen, M. and Jan-
20. Dische, Z. \textit{Methods Biochem. Anal. 2}
(1967) 313.
21. March, S. C., Parikh, L. and Cuatrejasas, P.
24. Wrigley, C. W. \textit{Shandon Instrument
(1972) 11.
26. Zacharius, R. M., Zell, T. E., Morrison,
27. Davis, K. A. and Hatesl, N. \textit{Arch. Biochem.
Biophys. 149} (1972) 505.
28. de Saussure, V. A. and Dandliker, W. B.
\textit{Immunochimetry 2} (1969) 77.
71} (1972) 919.
30. Abe, S., Shime, M. and Nagai, Y. \textit{J. Bio-
chem. (Tokyo) 73} (1973) 1007.
31. Ryan, C. A. In Fritz, H., Tschesche, H.,
Greene, L. J. and Truscheit, E., Eds.,
\textit{Bayer-Symposium V}, \textit{Proteinase Inhibitors},

Received May 17, 1976.